642 research outputs found

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201

    Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm

    Full text link
    We consider variable selection in high-dimensional linear models where the number of covariates greatly exceeds the sample size. We introduce the new concept of partial faithfulness and use it to infer associations between the covariates and the response. Under partial faithfulness, we develop a simplified version of the PC algorithm (Spirtes et al., 2000), the PC-simple algorithm, which is computationally feasible even with thousands of covariates and provides consistent variable selection under conditions on the random design matrix that are of a different nature than coherence conditions for penalty-based approaches like the Lasso. Simulations and application to real data show that our method is competitive compared to penalty-based approaches. We provide an efficient implementation of the algorithm in the R-package pcalg.Comment: 20 pages, 3 figure

    A Complete Generalized Adjustment Criterion

    Full text link
    Covariate adjustment is a widely used approach to estimate total causal effects from observational data. Several graphical criteria have been developed in recent years to identify valid covariates for adjustment from graphical causal models. These criteria can handle multiple causes, latent confounding, or partial knowledge of the causal structure; however, their diversity is confusing and some of them are only sufficient, but not necessary. In this paper, we present a criterion that is necessary and sufficient for four different classes of graphical causal models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion subsumes the existing ones and in this way unifies adjustment set construction for a large set of graph classes.Comment: 10 pages, 6 figures, To appear in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI2015

    Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

    Full text link
    We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide new soundness and completeness proofs for the adjustment criterion for DAGs.Comment: 58 pages, 12 figures, to appear in JML

    Learning high-dimensional directed acyclic graphs with latent and selection variables

    Full text link
    We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally infeasible for large graphs. We therefore propose the new RFCI algorithm, which is much faster than FCI. In some situations the output of RFCI is slightly less informative, in particular with respect to conditional independence information. However, we prove that any causal information in the output of RFCI is correct in the asymptotic limit. We also define a class of graphs on which the outputs of FCI and RFCI are identical. We prove consistency of FCI and RFCI in sparse high-dimensional settings, and demonstrate in simulations that the estimation performances of the algorithms are very similar. All software is implemented in the R-package pcalg.Comment: Published in at http://dx.doi.org/10.1214/11-AOS940 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Transverse instability of gravity–capillary solitary waves on deep water in the presence of constant vorticity

    Get PDF
    International audienc

    Causal Inference Using Graphical Models with the R Package pcalg

    Get PDF
    The pcalg package for R can be used for the following two purposes: Causal structure learning and estimation of causal effects from observational data. In this document, we give a brief overview of the methodology, and demonstrate the package’s functionality in both toy examples and applications

    A Mixed-Method Investigation of the Solo in a Wilderness Experience Program

    Get PDF
    The purpose of this study was to investigate the participants\u27 perceptions of an organized solo within a wilderness experience program and the influence that the participants themselves and the environment have on their perception. The literature suggests that many factors influence one\u27s ability to experience wilderness solitude and to engage in meaningful reflection that may lead to personal growth (Daniel, 2003; Fredrickson & Anderson, 1999; Hammitt,1982; Hendee & Brown, 1988; Koch, 1994; McIntosh, 1989; Norris, 2001; Richley, 1992; Stringer & McAvoy, 1992). Two of these factors can be categorized as the participant(s) and the environment; both are considered key program characteristics within the adventure education literature (McKenzie, 2000)

    III-nitride based heterostructures on silicon for optics and electronics applications

    Get PDF
    corecore